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Abstract

Using the Poincaré—Perron theorem on the asymptotics of the solutions of linear
recurrences it is proved that for a class of g-continued fractions the value of the continued
fraction is given by a quotient of the solution and its g-shifted value of the corresponding ¢-
functional equation.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In the Archimedean case it is known that the values of continued fractions in
certain g-continued fraction cases can be given by quotients of g-series. As examples
we mention the continued fractions of Rogers—Ramanujan
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where

- o o, 2"><z> (ar)(a2) "V (ar?)
HO ==y - Z @), (at]ar),(4t]a), ®)

and a = —1/ayar, b= —1/a; — 1/a [3]

Our Theorem 1, which is valid also in the non Archimedean metrics, will find
values for a rather wide class of g-continued fractions including the continued
fractions (1) and (2) as special cases. However, sometimes our results have very
different representations from earlier work, as may seen in the following application
of Theorem 1:

& (I4+aq" 't)g"t\  F(1)
o <1 +b t 1+bqn+1t ) —W, |q|<l, (4)
where
e S @) [ qr)”
FO = je). Y- o /az)n(q)n< ) )

and a = —1/ayar, b= —1/a; — 1 /ay.

2. Notations

The most important class of g-series consist of the g-hypergeometric (basic) series
Ly -eey Gk ~ (ar), - (ak)
P q, f) = . 1",
(bl,---,b ,; (@),(b1),, -+ (br),,

which are defined by using the g-factorials (a), = (a;9), =1 and (a), = (a;9), =
(1-a)(1—aq)...(1 —aq"") for neZ*. We also use (b,a),=1 and (b,a), =
(b—a)(b—aq)...(b—aq"") for nezZ". Hence (a),= (l,a), and especially
(@), =0 =q)...(1=¢").

By p we mean an element of the set P = {0 }u{peZ" |p is a prime} and we
shall use the notation | |,, = | | for the usual absolute value of C and | |, for the p-

adic valuation of the p-adic field C,, the completion of the algebraic closure of Q,,
normalized by |p|, = p~'

In the following we shall study convergence of the continued fraction

n a
(bo ) = by + 71612’ (6)
n=1 b, by +
by+ -
that is, we will determine the limit
lim Ay (7)
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of the convergents 4,/B,, where 4, and B, satisfy the recurrences

A, =byAy_\ +anAy—2, By=5b,B,_ +a,B,_2 Yn=2 (8)
with initial values

Ay =by, Ay =boby+a, By=1, B, =b. 9)

By the value of the continued fraction (6) we mean the limit (7) when it does exist.
Here we note that the continued fraction development using a functional equation,
say (11), and starting from F(¢)/F(gqt) does not necessarily converge to the value
F(1)/F(qt), see Perron [18].

3. g-Continued fractions

Through this work we suppose that |¢[,<1 in the given valuation p.

Theorem 1. Let s>1, q,1€C,, SoTo#0, [So|,<1. Then

o8]

K <T0+ Tit+ -+ Tt

n=1

To + Thiq" + - + Tit'g"
To G(Z) ‘ ‘
SoG(gr) 1P

B¢ (Sy + Sitq" + -+ + Spt'g™) )

= (So+ 1+ - + Sut") <1, (10)

where G : C,—C, is an analytic function such that F(t) = t*G(t) is a solution of the
functional equation

£F(g*t) = —(To + Tht + - + Tyt YF(qt) + (So + St + - + Sp"F(r)  (11)

satisfying q* = So/ Ty and F(qt)#0. Moreover, if h =0, then G: C,—C, is entire
Sfunction. The convergence in (10) is uniform with respect to variable t in every bounded
subset of C,.

So the value of the g-fraction (10) is a quotient of power series converging in some
disk || , <r.Sometimes, such as in Corollary 2, case (20), the value of (18) is given as
a quotient of entire functions even ~7#0. This phenomenon occurs when there exist
series transformations which give the analytic continuation of G(¢) to all of C,,.

The following corollary gives an example of the g-fraction, which value is given
directly by a meromorphic function in C,,.

Corollary 1. Let a,b,c,qeC,, then

qn G(l)
a+b61"+0612"> - ’ (12)

o0

K<a+b+c

n=1
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where
G0 =3 ot =1, g =(ab+a)/(ga*(1 - q)), (13)
k=0
qk k+3
k2 = m((dbq + ¢ g1 +acgr) VkeN. (14)

In this work we will not touch explicitly on applications where the polynomials
a,(q,t) and b,(q, t) are of degree more than two in ¢. In Corollary 2 the value of a ¢-
continued fraction, where a,(q, f) is at most second degree and b,(g, ) is at most first
degree polynomial in ¢, is given as a quotient of g-hypergeometric series. This should
be compared to the earlier considerations [1,2,5,7-16,19,20], where frequently the
polynomials a,(g,t) and b,(g,t) have quite low degrees with respect to . In [6] a
value of continued fraction with degrees 4 and 2 for a,(q, t) and b,(q, t), respectively,
is given by a quotient of g-hypergeometric series.

Corollary 2. Let A,B,C,D,qeC,, then

% Aq”z+Bq2"z2) ( BC) G(1)
K(C+Dt = (C+=t)=—=, <1, 15
n—l( C + Dq't A4 ) G(q1) 4, (13
where
_ - (CD7 _AQ)nq<’21> t\" _

G()—; o (Cz) if B=0, (16)

0 n

(4 (7) < )
G(1) = nn(_Zr) if B#0, 17
v n; (@), \ 4 (17

and

A A
= 2 - _ 2
A 2BC(DJr\/D +4Bgq), 7y ZBC(D D? + 4Bg).

Equivalently to Corollary 2 we have

% Aq't + qu”ﬂ) ( BC . ) H(t)
K(C+Dt —(Cc+=u , <1, 18
n—l( C+ Dq't A" H g 9, (1%)
where
0 qnz A n
HH=S —1 (24} if B=0, 19
(=2 <—Dz/c>n<q>n(02) 1)
H =S M(VB;)H if B0 (20)
n=0 (_Bit/A)n(Q)n A .
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Corollary 2 includes the Rogers—Ramanujan continued fraction (1) as the special
case A=C=1, B=D=0. The corresponding p-adic result for the Rogers—
Ramanujan continued fraction is proved in [16].

The g-continued fraction

Aq't ) 1)
1 + Dq"t

o0

k(1400

n=1

has been extensively studied in the last century. By Corollary 2 the continued
fraction (21) has the value

o0 Aq”t _&_&

n1_<1(1 o 1+Dq"t> "~ F(qr)  Glqt) lgl, <1, (22)
where

Ft) = zw: (—ACI(/D),,q<2> (Diy’ -~

n=0 q)n
and
IR Y
60 =2 oy, A" (24)

The g-fraction (21) appears in Entry 15, Chapter 16 of Ramanujan’s second
notebook, see [1,7], there the value of the g-fraction (21) in t = 1 and by = 1 is given
by

2

o (| Ag N\ F(A) N
nKl(l' I +an) =Fgay T9= 2 Tog ) 2

On the other hand, if we replace ¢ by ¢*> and put then D = ¢, A = o and t = 1 in
(22) and (23), then we get the result

o0 OCq2n B F(l)

n1:<] (1 + ﬁq’ 1 _|_ ﬁq2ﬂ+l> - W’ |q|p<17 (26)
where

F= ; (@4, ()" (27)

proved by Carlitz [10] and in the special case o« = f§ by Gordon [12].
The ¢-fraction

Ad" B 2n
}?<1+D‘ 7+ 5q > (28)
n=1 1+ Dq"

appears in Ramanujan’s lost notebook and is studied in [9] formula (V') 5. The value
of (28) may deduced from (18) and (20) and we note that result (4) comes as a special
case.
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The identity
I k n e n
f((l +q):1<(a 1 ) (29)
n=1 1 n=1 o+ pq"

where o = (1 ++/1+4k)/2 and = (—1++1+4k)/2, has been considered by
Ramanujan and proved recently in [8]. In identity (29) we note that the second
continued fraction falls in the class of continued fractions studied in Corollary 2.

Here we note that modifying our proof of Theorem A we may study also certain ¢-
fractions, where s = 0. Then it is possible to study the first g-fraction in (29) and also
we may study certain ¢-fractions, which have connections to orthogonal
polynomials, see [2].

4. Second order g-functional equations
We shall use the operator J = J; defined by
JE(1) = F(q1)
satisfying
J(FG) =JFJG

whenever the scalar or matrix product of F and G is defined.
Let F(z) satisfy the g-functional equation

N()F(q*t) = —Ao(t)F(qt) + Bo(1)F (1) (30)

of lowest order, where N (1), Ao(t), Bo(t) € C,[q, 1]. Equivalently in the matrix form we
have
JF —Ay B JF
NJ - o (31)
a N 0 F

NJA = A, (32)

or

where J operates to the 2-vector A and # is the 2 x 2 matrix. When we denote

n—1
[F], = H J'F, [F]_,=1VneN,

n
i=0
then we may write

[N, J""2F = (=1)"" 4,JF + (—1)"B,F Vn> —2, (33)

n+1
where A_; =1, B_; =0and 4_, =0, B_, = 1. Consequently
[N, /" 'A = 2,A ¥n>0, (34)
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where

?}n — ( (_1)n+1An (_ll)an > (35)
(=1)"J"NA,_; (=1)""'J"NB,_,

Eq. (32) operated by J"*! implies
JTINJ2A = J 1 o JIAL (36)
Multiplication of (36) by [N],,; and the use of (34) give
[N, 20" A = T 202, A (37)
Hence by (34) and (37) we get

Lemma 1.
P =" PP, VneN. (38)

This fundamental recurrence form implies the following lemmas.

Lemma 2. The polynomials A,(t) and B,(t) satisfy the linear recurrences

Au(t) =J" Ao () A1 (t) + J"Bo(t)J" "' N (1) A, (2),

B,(t) =J"Ao(t)B,—1(t) + J"Bo(t)J"'N(t)B,_»(t) VneN (39)
with initial values Ay =1, B_.1=0and A_, =0, B_, = 1.

Proof. From formulae (35) and (38) we get
(_l)n-HAn (—l)an
(=1)"J"NA,_; (=1)""'J"NB,_,

B (—J”Ao J”Bo> (=1)" 4, (-1)"'B,_
JN 0 (=)' INA, (=120 'NB, )’

which directly gives recurrences (39). [

Lemma 3. Let g,1eC,, satisfy Bo(¢"t)N(q*1)#0 for all keN, then

ApByit — Apy1 By #£0 VneN (40)
and thus the sequences (A,) and (B,) are linearly independent solutions of recurrence
(39).
Proof. From formula (38) we get

P = (J"P)) (I Py)...(JPy)Py. (41)
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Using the determinants

det J¥2 = det ( —J* JkBO) — —J* BN
JN 0

we get

det 2, = (=1)""'[Bo],.y 1 [N, (42)
and from (37) it follows

det#, = J"N(A,B,—1 — Ay—1By) (43)
giving

AyByy = Auo1 By = (=1)"" Byl [N],. (44)
Hence (40) follows. [
5. Proof of theorems

Let F: C,—C, be a solution the functional equation

M (t)F(q°t) = —T(1)F(qt) + S(t)F (1), seZ* (45)
of lowest order, where M (t), T(t),S(t) eC,[q, ?]. We shall set

a (1) = ¢ VM (¢ 1)S(q"),  bal) = T(q"0), (46)

where

m

h 1
S =S, T(t)=> T, M(t)=> M.
k=0 k=0

k=0

Theorem A. Let s>1, MoSoTo#0, |So|, <1 and q,1€C,, |q|, <1. If M(¢*1)S(4"1) #0
for all keN, then

S an(l) o F(l)
nI:{l (bO(t) bn(l)> B S(t) W, (47)

where F(t) is a solution of the functional equation (47), satisfying F(qt)#0 and an
upper bound condition |F(t)|, <L, in a neighbourhood of zero with some L, e R*.

Proof. First we consider the function

o0

H(t) = F(1) || S(tq"),
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which satisfies the functional equation
NH(g*t) = —AoH (qt) + BoH (1),

Ao0) = T(), Bolt) =1, N(1) = £ M(1)S(qr). (48)
Using (33) we get
_p H@) _ H(q""1)
R, = Bnm — Ay = (=1)"[N],1, “HqD) (49)

By Lemma 3 there exist an infinity of » such that B,(7) #0 and so we may study the

convergence of A,/B, towards H(t)/H(qt) by
n+1

ls(n+l)q5( 2 )[M(l)]nHF(q"“t)

B.(0F(q1)

Here |F(q"t) |, <Ly, when n is big enough, say n> K, because the upper bound of

H(t) A,

— 2= (1)

H(qt) B, (50)

F (1) near zero. Also there exists an upper bound L) eN such that
M ()], SLyIMo[,™ Vn=Ko (51)
because the product
Mg (0= 000 = T 40
=0
goes to a limit M[’,e(Dp for every ¢,1€C, and |q[,<1.
So in the numerator of (50) the term qs(nJZrl) determines the convergence while in

the denominator we have to study the behaviour of B,(¢).
Lemma 2 gives our starting point which will be the recurrence

B,(1) = T(¢")B,_1(t) + £¢°" VM (¢"'1)S(¢"1) Bo_» (1) (52)
satisfied by (4,), (B,) and (R,).
(1) The complex case C

We shall consider the asymptotic behavior of B,(¢) by using Poincaré—Perron
Theorem [17]. First we note that

T(¢")—>To, S(q"t)>S, M(q"t)—> M. (53)
Hence the associated recurrence equation of (52) will be

B, = TyBy 1, (54)
having the characteristic equation

7’ =TyZ (55)

with roots o = Ty and f# = 0. Here a# and thus Poincaré—Perron Theorem [17]
gives two linear independent solutions (E,) and (F),) of (52) such that

Eq Fun
it Ly, g (56
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By (56) we know that for a given 6eR", (0<d<1) there exist by = by (d), by =
b>(8)eR" and K3 = K3(5)eN such that

bi(1=0)"o|" <|Es| <ba(1 4 0)"|o" Vn=Ks (57)
and
|Fn|<b25n Vn=Kj. (58)

From (49) we know that for any given ¢€ R there exist b3 = b3(¢)eR" and Ky =
K4(¢)eN and such that

Rl < (bslq|™?)' <& Vn>Ka. (59)
If now

g (60)
then there exist by = by(e) e R and K5 = Ks(¢)eN such that

|By| <bse” Vnz=Ks. (61)
By (49)

A, = H'B,—R,, H'eC,
and so there exists bs = bs(¢) e R™ such that

|4,| <bse" Vnz=Ke = max{Ky, Ks}. (62)
Because (4,) and (B,) form a basis for the solution space of recurrence (52) we get to
any solution C, = a4, + bB, the upper estimate

|Cu|<bee" VYn=Kg (63)

for some bg = bg(¢) e R which clearly contradicts (56). Hence for a given deR™,
(0<d<1) there exist K = K(8)eN and b7 = b7(5), bs = bg(5) e RT such that

b7(1 = 6)"of" <|Bu| <bg(1 4 6)"|oe|" Vn=K (64)
and also
br(1 = 8)"|o|" <|Au|<bs(1 +0)"|o|" Vn=K. (65)

Taking n enough big in (64), formula (50) implies

(}’l

+1
H(t) A _|rm g2 ) Mt L L
‘ (Zt)) o T2 My L Ly g (66)

H(q _B_,, = by(1 —5)n|T0|n|F(qt)|

(2) The p-adic case C,
Again we shall consider recurrence (52)

By(t) = T(¢"0)By-1(1) + "V M ("' 1)S(¢"1) B, 2 (1)
with K7 such big that
IT(q"0)Bu1 (1)), > 24"V M (¢""1)S(q"1) By 2(0)]

, Vn=K; (67)
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giving
B/(0)], = |T(q")Bo 1 (1)], Vn>Ko. (68)
Hence

|Bn(l) >b9|T()|Z Vn=K;. (69)

A

Similarly to (66) we have

n+1
|ts(n+l)q5( 2 )Mg+l|pL;L,,

H(:) A,
o g . Vn=K. 70
P A <etir 70
Together (66) and (70) imply
lim A A (71)

n— oo Fn_ H(q[)

uniformly with respect to variable ¢ in every bounded subset of C, for all p finite or
infinite.
Let

by, =J"T(t), a1 =J"N(t), VneN,
then (A4,) and (B,) satisfy the recurrence

Apio =bpioAp + ayinA, YneN (72)
with initial values

Ay =by, Ay =bobi+a, By=1, B} =b. (73)

By (72) and (73) we deduce that A4, and B, are the numerator and the denominator,
respectively, of the nth convergent of the continued fraction

A (ol

for every neN. Thus

» an(l) _ H(l)
X (bo(l bn(l)> = e (74)

Hence (74) implies

~—

© an(t)\ _ o F0)
K (bo(t) N (l)) =S50y O (75)

To prove Theorem 1 we have to solve the functional equation (11).
Let us define the orbits

I(t) ={tq"|neZ}, teC,,
and the index set Q = {0} u{reC,l|q|,<|7[,<1}, which make up a partition of C,
thatis [, .o I(w) = C,. Given ¢,1€C, and any initial values

F(1), F(qt)€C,
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then the functional equation (11) has unique solution F(¢) on the orbit I(¢), if
M (¢Ft) #0 for all ke Z. Thus it should be noted that the functional equation (11) has
even non continuous solutions.

However, now we look for the Frobenius series

.
F(1) = Z g™, go=1, xeC,
n=0

solution of
PF(gt) = —(Ty + - + Tit ) F(qt) + (So + -+ + Spt")F(1). (76)

Let E be the shifting operator Eg, = ¢g,.1. Readily, the comparison of equal
exponents in (76) gives

0= (=Toq" + So)g0 = q" = So/To (77)
and
(S(E™Y) — ¢ T (g 'E™Y) — ¢ ¥"™E~5)g, =0 VneZ, (78)
where we put g, = 0 for all meZ~. Hence
(T3(So + -+ + SE™) = SoToq"(To + -+ + Tig 'E™")
— 854" PE ) gy =0 VneN, (79)
which is equivalent to
SoTg(1 = ¢")gn + To($1To = SoTiq"")gn1 + -+
+ (85 = SoToToq"™ = S3¢7" > ) gy + -
+ To(SkTo — SoThq" gk =0 k = max{h,l} (80)
for all neZ. The associated recurrence of (80) will be
Sogn + Sign-1+ -+ + Skgn—k =0 (81)
with the characteristic equation
SoX" + S X445, =0. (82)

If S,#0 for some Ah>1, then Eq.(82) possess a root system such that
lot| = -+ =|ots| >0 and thus Poincaré—Perron Theorem [17] shows that every solution
of (80) satisfies

|gn| < (b1o|on|)"  VneN (83)
for some bjpeR™. Thus the series
G(Z) = Z gntn7 go = 1,
n=0

presents an analytic function in some disk D(0,r)eC of positive radius r.
The p-adic counterpart goes by elementary estimations.
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If 4 =0, then
q! -1
YIn :7(T0qu7 gn—1+ -
T3(1 —q")
+ (TOqul_S + SanH_zx)gnfs + -+ TOTlgnfl)-
So
[tn?] 1
gl‘l - q—h}’H = N . . N 1
(q), 2max{s,/} +1
where

[l <P

for some b;; e R". Hence the series G(¢) determines an entire function in C,,.

Proof of Corollary 2. Now we have s = 1 and
S(t) = Aq + Bgt = Sy + Sit,
T(t)=C+Dt=Ty+ Tit.

Thus ¢* = Aq/C and

_A2q2k71 —|—ACDqk71 —BC2
Jk = ACz(l — qk) Jk—1,

which gives

0 n 2 2k—1 k—1 2
[T (A2¢* "+ ACDg"' — BC?) 1 t \"
G() =) =
o (q), (ACZ)

By Theorem 2 we get

Aq't + Bg*'t?
C+ Dq"t

G(1)
q*G(qt)

§<C+Dz

n=1

) = (Aq + Bqt)

151

(88)

which is (15) with (16) when B = 0. If B#0, then we factor the numerator in (88) to

get

03 (1)

n=

which is (17), where

J= 2BC (D++/D*>+4Bq), v

A
— = _(D— /D> 4Bg).
2BC( + 4Bq)
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Finally using Heine’s transformation

(") = G () ®

(see [4, 10.10.1]) we have

6() =\ =H O
(-BujA), A (,4Y (1B
(CBi/A), ; B/lt/A (@), (At> ' (%0)

Identity (90) proves (18) with (20), which reduces to (19), when B = 0.
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